Using Hadoop Mapreduce, First of all, start the Hadoop Cluster using the commands given below.
$HADOOP_HOME/sbin/start-dfs.sh |
$HADOOP_HOME/sbin/start-yarn.sh |
Check by typing jps in the terminal if all the Nodes are running.
Do you remember in the last article we looked at how a word counter works?
Using Hadoop Mapreduce Let’s implement the above.
You need to create three files.
- Reduce.java
- Map.java
- WordCount.java
Reduce.java
package com.impetus.code.examples.hadoop.mapred.wordcount; import java.io.IOException; import java.util.Iterator; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.MapReduceBase; import org.apache.hadoop.mapred.OutputCollector; import org.apache.hadoop.mapred.Reducer; import org.apache.hadoop.mapred.Reporter; public class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> { public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { int sum = 0; while (values.hasNext()) { sum += values.next().get(); } output.collect(key, new IntWritable(sum)); } }
Map.java
package com.impetus.code.examples.hadoop.mapred.wordcount; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.MapReduceBase; import org.apache.hadoop.mapred.Mapper; import org.apache.hadoop.mapred.OutputCollector; import org.apache.hadoop.mapred.Reporter; public class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { String line = value.toString(); StringTokenizer tokenizer = new StringTokenizer(line); while (tokenizer.hasMoreTokens()) { word.set(tokenizer.nextToken()); output.collect(word, one); } } }
WordCount.java
package com.impetus.code.examples.hadoop.mapred.wordcount; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.FileInputFormat; import org.apache.hadoop.mapred.FileOutputFormat; import org.apache.hadoop.mapred.JobClient; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.TextInputFormat; import org.apache.hadoop.mapred.TextOutputFormat; public class WordCount { public static void main(String[] args) throws Exception { JobConf conf = new JobConf(WordCount.class); conf.setJobName("wordcount"); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(IntWritable.class); conf.setMapperClass(Map.class); conf.setCombinerClass(Reduce.class); conf.setReducerClass(Reduce.class); conf.setInputFormat(TextInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); FileInputFormat.setInputPaths(conf, new Path(args[0])); FileOutputFormat.setOutputPath(conf, new Path(args[1])); JobClient.runJob(conf); } }
Now you need to compile java files.
There are two ways to compile java files.
mvn clean install |
Or run the following command.
javac -d . Map.java Reduce.java WordCount.java |
If you used javac -d command then run the following command too.
jar cfm wordcounter.jar Manifest.txt com/impetus/code/examples/hadoop/mapred/wordcount/*.class |
Now let’s create an input folder in HDFS.
Hdfs dfs -mkdir ~/wordcount/input |
Now we are going to create two input files.
sudo vi input_one |
And put the following content inside it.
And another file.
sudo vi input_two |
Using the command below move the file to HDFS file system
hdfs dfs -copyFromLocal input_one ~/wordcount/input/ |
Do the above for both input files.
Now check if both files have been moved.
hdfs dfs -ls ~/wordcount/input/ |
Using Hadoop Mapreduce Now run the map-reduce using the command given below.
$HADOOP_HOME/bin/hadoop jar wordcounter.jar /input /output |
By running the below-given command you will be able to see the output.
bin/hadoop dfs -cat ~/wordcount/output/part-00000 |
One Response